Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields
نویسندگان
چکیده
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.
منابع مشابه
Competition between core and periphery-based processes in warm convective clouds – from invigoration to suppression
How do changes in the amount and properties of aerosol affect warm clouds? Recent studies suggest that they have opposing effects. Some suggest that an increase in aerosol loading leads to enhanced evaporation and therefore smaller clouds, whereas other studies suggest clouds’ invigoration. In this study, using an axisymmetric bin-microphysics cloud model, we propose a theoretical scheme that a...
متن کاملMicrophysical effects determine macrophysical response for aerosol impacts on deep convective clouds.
Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting ...
متن کاملStratocumulus Cloud Clearings and Notable Thermodynamic and Aerosol Contrasts across the Clear–Cloudy Interface
Data from three research flights, conducted over water near the California coast, are used to investigate the boundary between stratocumulus cloud decks and clearings of different sizes. Large clearings exhibit a diurnal cycle with growth during the day and contraction overnight and a multiday life cycle that can include oscillations between growth and decay, whereas a small coastal clearing wa...
متن کاملAerosol effects on the cloud-field properties of tropical convective clouds
Aerosol effects on condensed water and precipitation in a tropical cloud system driven by deep convective clouds are investigated for two-dimensional simulations of 2-day duration. Although an assumed 10-fold increase in aerosol concentration results in a similar temporal evolution of mean precipitation and a small (9 %) difference in cumulative precipitation between the highand low-aerosol cas...
متن کاملSensitivity of aerosol and cloud effects on radiation to cloud types: comparison between deep convective clouds and warm stratiform clouds over one-day period
Cloud and aerosol effects on radiation in two contrasting cloud types, a deep mesoscale convective system (MCS) and warm stratocumulus clouds, are simulated and compared. At the top of the atmosphere, 45–81% of shortwave cloud forcing (SCF) is offset by longwave cloud forcing (LCF) in the MCS, whereas warm stratiform clouds show the offset of less than ∼20%. 28% of increased negative SCF is off...
متن کامل